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Bergmannian Relativity and Bracket Spaces

David Carl Honeycutt'
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We explore an avenue of higher-dimensional spacetimes based on generalized
spinors which transform under the special linear groups and result in spacetime
dimensions which are squares of integers. The Bergmannian chronometrics are
not Riemannian, but Finslerian in the higher dimensions. The general concept of
bracket space is introduced in order to show a variety of routes to hyperspace.
The field equations found generalize Einstein’s by replacing a factor of two by
the spinorial dimension. A mass term is introduced in the action, which results
in a hyper-stress-energy-momentum tensor. The chronometric is not required to
be covariantly constant under the hyper-Palatini variations: there is torsion.
“Spherical” symmetry in this spacetime is explored, an appropriate set of coordi-
nates is introduced, and the invariant for nine-dimensional “spherical” symmetry
is given.

1. INTRODUCTION

The Quantum Topology Workshop at Georgia Tech has pursued the
possibility of describing higher-dimensional spacetimes using quantum
spinors (Finkelstein ¢z al., 1985, 1987; Finkelstein, 1987; Holm, 1986, 1987,
1989). Section 2 of this paper treats the Bergmannian chronometric as an
alternative to the Riemannian chronometric. The concept of a bracket space
is introduced in Section 3 to connect several concepts of hyperspace in a
logical fashion in Section 4.

The four subsections of Section 5 are devoted to one sequence of hyper-
spaces suggested by the Bergmannian chronometric. Section 5.1 describes
how the chronometric is placed on the spacetime. Section 5.2 lists
assumptions used in general relativity and then describes how the list has
changed due to this particular higher-dimensional generalization of general
relativity. Section 5.3 evaluates a few possibilities for raising and lowering
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tensor indices. Section 5.4 contains the derivation of the higher-dimensional
equation of motion for this spacetime, obtained by varying an action. The
action chosen is similar to that of general relativity. The hyper-stress-energy-
momentum tensor is introduced in Section 5.4 and the Newtonian limit is
examined to find the kappa coefficient. The hyper-Palatini method is intro-
duced and yields a different result than the usual chronometric constancy.

In Section 6 we generalize the Schwarzschild spherically symmetric
spacetime. The coordinates include one time axis, N— 1 radial scalars, and
N(N—1) angles. The last subsection of Section 5 examines the N=3 case,
i.e., nine-dimensional “spherically” symmetric spacetime, and an invariant
spacetime interval is found.

2. CHRONOMETRICS IN HYPERSPACE

2.1. Einstein Chronometric

In special relativity dt*=c¢* d* — dx* — dy* — dz” is the invariant interval
between spacetime events. From here on we set ¢=1 to simplify the equa-
tions. The invariant for special relativity is often written as

dr® =ng dx* dxb

where a, b=0, 1, 2, 3 and where 1o =1, 111 =12=133=—1, all other com-
ponents are zero, and dx’=dt, dx' =dx, dx*=dy, dx*=dz. This matrix, 7,
is called the Minkowski chronometric.

A chronometric describes the spacetime interval, while a metric in the
topological sense describes the distance between two points of space. A
chronometric is not a metric. However, when the meaning is clear in context,
“chronometric” is abbreviated by “metric.”

In curved spacetime the interval is generalized to allow cross terms and
to allow functions of spacetime in front of the terms. Then the invariant is
of the form dr’>=g,, dx* dx’, where a,b=0, 1, 2, 3. The g, are then com-
ponents of the Einstein chronometric. These components are the real coeffi-
cients which describe the gravitational field. Due to the form of dz?, we can
let 2.5 = g», Without loss of generality.

2.2. Riemannian Chronometric

The n-dimensional Riemannian extension of curved spacetime is defined
by setting @ and b to range from zero to n—1 instead of 3, while keeping
the form of the invariant dr’=g,, dx® dx’, where a, 5=0, 1, ...,n—1. Then
the g,, are components of the Riemannian chronometric. The Riemannian
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extension of curved spacetime seems natural when the invariants are pre-
sented as in the previous section. An example of the Riemannian extension
is the Kaluza-Klein extension to n=35 to include electromagnetism, where
gso=Ao and gs;= A; and where 4 is the electromagnetic potential (A4 is a
gauge field). Often the higher dimensions are used to include gauge fields in
curved spacetimes.

2.3. Spin Form

The chronometric is taken as the fundamental variable of spacetime for
relativities based on the Riemannian chronometric. We shall take as the
fundamental variable a tensor object called the spin form. The following
discussion on vectors, tensors, spinors, and spin forms is in preparation for
the section on the Bergmannian chronometric.

For every vector space V, there exists a dual vector space V'°, a complex
conjugate vector space V*, and a complex conjugate dual vector space
V*P. Denote the components of elements of ¥ by x*; those of ¥ by x,;
those of ¥* by x*; and those of V"*” by x,. These spaces can be defined as
follows:

1. VP={f|f: V- C;flinear}
2. V*’={f|f: V- C;f antilinear}
3. V¥={f|f: V*’ > C;flinear}

If you think of ¥ as column vectors, then think of ¥'” as row vectors, V*
as column vectors, and V?* as row vectors. Recall that a row vector times
a column vector equals a number.

A tensor in

VPR - - -®VD®V®- S RVRVHPR - QVPRQV*®- - Q V*
can be defined as an element of the class
T={f|f: W— C; f multilinear}
where
W=VX-- - XVXV?X-+ XVPXVEX-. . XV*x...V*D

T is said to be a tensor of type (p, ¢; 7, 5), where p is the number of V™,
g the number of Vs, r the number of ¥*™s and s the number of ¥*’s in
W. Thus, a tensor component has indices which are raised, lowered, raised
primed, and lowered primed. The components of a tensor are dependent on
the basis vectors, basis dual vectors, . ... Changing from one basis set to
another yields a transformation of the tensor components.

Let flat spacetime be represented relative to an origin by a real n-
dimensional vector space ¥, with vector elements represented by components
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x“ (ie., small indices). Similarly, let the spin space be represented by a
complex N-dimensional vector space Sy with spin-structure elements repre-
sented by components x” (i.e., capital indices). The homomorphism between
the Lorentz group and the spin group is such that the homogeneous Lorentz
group is doubly covered by the spin group, which implies that the product
Sy X Sy« corresponds to an N 2_dimensional vector space. The components
of tensors on Sy X Sy« are represented by x**. In Section 4, we shall require
x** to be Hermitian. Then x** will have fewer independent components
than two full spinors. For this reason one calls x** a sesquispinor (one and
a half spinors). The components x** of the sesquispinor can be mapped to
a component x” of the vector by
X = g A

where o, is a spin form.

2.4, Bergmannian Chronometric

Since spin is basic to the structure of quantum mechanics, we look to
spin as the basic structure of relativity in the desire to combine both concepts
(quantum mechanics/relativity) into one theory.

One way to represent the spin form in four dimensions is by using the
2 x 2 identity matrix &, and the three Pauli matrices &, &., &;. A sesqui-
spinor X may be expressed as X =¢6¢+Xs, where Xs=x6,+y6,+283.
Then the invariants for Newtonian physics are given by dx’+dy*+dz° =
det(dXs) and dt=3 trace(dX ). The invariant for special relativity is

di*=df —dx*— dy* — dz* = det(dX)

In curved spacetime this concept can be extended to any linearly inde-
pendent set of four 2 x2 Hermitian matrices represented by the symbols
Oy, 01, O3, 03, With X=tco+ x0,+y0,+z03. Then the curved spacetime
invariant is (Penrose and Rindler, 1986)

dr? =gy dx® dx® = det(dX)

The N*-dimensional extension of curved spacetime which we consider here
uses a linearly independent set of N x N Hermitian matrices with indices
ranging from zero to N>— 1. The invariant for this new space is

drV =det(dX)=gup. dx“dx" dx‘ . ..

where g has N indices. The g . are called components of a Bergmannian
chronometric. This chronometric is symmetric and linear. The g®“- are
called components of the inverse Bergmannian chronometric. Although the
Riemannian and Bergmannian chronometrics are equivalent for four-dimen-

sional spacetime, they are distinct for higher dimensions.



Bergmannian Relativity and Bracket Spaces 1617

3. BRACKET SPACES

3.1. Introduction

General relativity is often expressed in tensor formalism, or in spinor
formalism, which includes the tensor formalism and is more fundamental.
There are three higher-dimensional spin structures which reduce to general
relativity for n=4: Riemannian spinors, Bergmannian spinors, and symplec-
tic spinors. Each of these three spin structures can be used to extend general
relativity from four dimensions to higher dimensions. To see the difference
between the spin structure approaches, we introduce the unifying concept of
the bracket space which is used to define the associated spin structure. Each
spin structure follows from a particular bracket space. The spin structure
depends on a bracket group and a bracket algebra. It is important that one
stays within one bracket space when building a spin structure.

3.2. Bracket Space

A bracket space {V, [ 1, A} is defined by the following three structures.

1. A vector space V (typically R” or C”) over a field F (typically R
or C).

2. Abracket[ ].LetkV=V®- - - @V, where there are k vector spaces
entering the direct sum. A general element of k¥ shall be designated
by B. A bracket [ ]is a map f: kV — F linear in each factor V (i.e.,
multilinear in V). We call k the degree of the bracket.

The group of a bracket [ ] is the group G of linear transformations
of V¥ that preserve the bracket, i.e., for any linear transformation M, Vx;eV,
F(Mxy, ..., Mx)=f(x1,...,x). Once the bracket is chosen, the group is
determined.

Let Si be the symmetric group acting on the &k vectors of kV. We
postulate the existence for each x€ S, of a semilinear (i.e., linear or antilinear)
map

B(x): kV-kV
with
B(xy)=pB(x)B(y)
B(H=1
and satisfying the bracket relation
{(xp(x)B]=B]

where x 1s an element of S.
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3. A linear free associative algebra A. This is defined when a bilinear
product © is given to the vector space V, such that
Vx1, 26 V]x1 © x€4
and
Vx, y,zed, xO(02)=(x0»)0Oz

where @ is distributive over addition.
Let IT be the multilinear product operator

II: kV-A
NB=T(x;® " Pxp)=x10" " Oxx

Define the symmetrizing operator Z;; which operates on an ordered k-
tuple to result in a sum of ordered k-tuples which have the same symmetry
as the bracket, by

1
pB=, ) xB(x)B

- xeSg
It can be shown that
E)*=1p
We postulate that for some ¢€A4 and all fekV and all aeA,
IZ;,B=[Ble
ga=ag

Then {V,[ ], A} is a bracket space.
The bracket space thus has associated with it the following auxiliary
structures as well:

S a symmetric group

B(x) a bracket conjugation

G a bracket group

£ an element of the center of 4

The following are four examples of bracket spaces, three of which we
will use to build associated spin structures.

3.2.1. Orthogonal Bracket Space

Let ¥ be a real Hilbert space, i.e., V=R", F=R, [ ]=the dot product.
An n X n square matrix has signature <{a, §) if it can be transformed by a



Bergmannian Relativity and Bracket Spaces 1619

similarity transformation to a diagonal matrix which has a entries +1,
entries —1, and (n— a — B) entries zero. Every real symmetric matrix can be
transformed in this way. Let S be a nondegenerate symmetric matrix with
signature <k, n—k). The dot product is given by f(x, y)={x, y} =x"Sy.
Thus,

S(Mx, My)=(Mx)"S(My)=x"(M"SM)y

So the group associated with the dot product is the group of all matrices for
which M"SM =S, the orthogonal group O(k,n—k, R). Notice that
O(a, b, R) is the same group as O(b, a, R). The dot product is symmetric;
thus the permutation subgroup is S»= (1, X), represented by f(x) =identity.
Thus we generate an algebra by

X, (x; B x2) = {x1, x2}e
which can also be written as
H(xQy+yOx)={x,y}e

where e is defined as the identity. This is the (orthogonal) Clifford algebra.
Thus the orthogonal bracket space is given by

{R", dot product, Clifford algebra}
with auxiliary structures

{S,, identity, orthogonal group, identity}

3.2.2. Symplectic Bracket Space

Let V be a symplectic space, i.e., V=R*, F=R,[ ]=symplectic bracket.
Let J be an 7 X n nonsingular antisymmetric matrix. The symplectic bracket
is given by [x, y]=x"Jy. Thus,

S(Mx, My)=(Mx)"J(My)=x"(M"JM)y

So the group associated with the symplectic form is the group of all matrices
for which M"JM=J, the symplectic group Sp(n, R). [Do not confuse
the symplectic group with the infinitesimal symplectic group, the group
of all matrices K satisfying the relation K’J+JK=0 or equivalently
(€7 J(e™) = J for all numbers s.] The symplectic bracket is antisymmetric;
thus the auxiliary symmetric group is S»=(1, X), represented by f(1)=1,
B(X)=—1, which we write as S(x)=(—1)". Thus, we generate an algebra
by '

MZ_(x, D x2) =[xy, x2]e
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which can also be written as
XQy—yOx=[x,yle

where ¢ is the identity. This is the Weyl algebra (or the symplectic Clifford
algebra).
Thus, the symplectic bracket space is

{R", symplectic bracket, Weyl algebra}
with auxiliary structures

{S>, (—1)*, symplectic group, identity}

3.2.3. Hilbert Bracket Space

Let ¥ be a complex Hilbert space, i.e., V=C", F=C, [ ]=( )=inner
product. The inner product is given by [x, y]=<x, y>=x"y. Thus,

[Mx, My]=(Mx)'(My)=x"(M'M)y

So the group associated with the inner product is the group of all matrices
for which MTM =1, the unitary group U(n, C). The inner product is complex
conjugate symmetric; thus, the permutation subgroup is S,= {1, X}, with
B(1)=1, B(X)=Hermitian conjugate =¥, written B(x)=1". Thus, we gener-
ate an algebra by

IZ500" @ x2) = (x1, X2e
which can also be written as
I(xOY*+y*Ox)=<{x, yde

where e is defined as the identity. We call this algebra the Dirac-Hilbert
algebra.
Thus, the Hilbert bracket space is given by

{C", inner product, Dirac-Hilbert algebra}
{Sw, 1%, unitary group, identity}

3.2.4. Grassmann Bracket Space

Let ¥ be a Grassmann space, ie., V=C", F=C, [ ]=Grassmann
bracket. Let x;, ..., xy denote the determinant composed of the vectors
X1, ..., Xy as columns. The Grassmann bracket is given by

[x1,- ., xn]= | X1, .. .5 XN|
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Thus,
[Mxy,..., Mxy]=|Mx;, ..., Mxy|
=(det M)"|x;, ..., xy|
=(det M)"[x1, ..., xn]

So the group associated with the Grassmann bracket is the group of all
matrices M for which (det M)"=1. The subgroup which is connected with
the identity is called the special linear group, SL(¥N, C). The Grassmann
bracket has the symmetry (—1)":=1 for even permutations p, —1 for odd
permutations p. Thus, the symmetric group is Sy, represented by f(x)=
(—1)". Thus, we generate an algebra by

E_(x @ Dxy)=[x1,...,xn]E
which can also be written as
xvx+xvx=0
and
X1V vxy=[xi,...,xy|E

where E is a top (defined below). This algebraic product is called the join.
If the identity were used in place of the top, then the bracket algebra in this
case would be the field algebra.

There exists a basis {b;, ..., by} such that [b;,...,by]=1. Choose
such a basis and define E=5b, v - - - v by, called top.

The join x v y has a natural companion called the meet x A y defined by

CTRYARRRYS " W 6 797 AVEIERVE ' ) b I for m=N
=0 for m<N
The top E is an identity for the meet. The algebra with this combination of
join and meet is called the Grassmann double algebra (Barnabei et al., 1985).
Thus the Grassmann bracket space is given by
{C", Grassmann bracket, Grassmann algebra}

with auxiliary structures

{SNz (_I)X’ SLN: top}
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4. PATHS TO HYPERSPIN

4.1. Spin Structures

A vector space and a spinor space are associated through the spin form.
We discuss elements of three spin structures which are used in physics to
investigate higher-dimensional relativity. These three cases are called
Riemannian, Bergmannian, and symplectic. For the Riemannian and sym-
plectic cases the spinor space is constructed from the vector space, whereas
in the Bergmannian case the vector space is constructed from the spinor
space. Each structure uses constructs from one of the bracket spaces.

4.2. Riemannian

The Riemannian approach to spacetime goes via the orthogonal bracket
space. An n-dimensional real vector space is used to generate a Clifford
algebra of order n, C,, which has

n n! n

n
— == =2n 1 ment
kgo k' (n —“k)‘ kgo (k> clements

(Budinich and Trautman, 1988). The elements of this algebra are then used
to construct a spin space. The dimension of this spin space is on the order
of the square root of the algebra dimension,

N=2""2 for n even
N=2("D/2 for n odd

The symmetric dot product suggests we define

EaBEAE Oa" OFF =gap
where £4p is an antisymmetric tensor, 4 and B range from zero to N—1,
and @ and b range from zero to n— 1. Then the tensor g, is called the
Riemannian chronometric. This spin structure is commonly used in higher-
dimensional relativity. Since this case is the most common, the term “spinor”
is often used, implying the term ‘“Riemannian spinor.” The context will tell
which spin structure is being used.

4.3. Bergmannian

The Bergmannian approach to spacetime is via the Grassmann bracket
space. An N-dimensional spinor space is used to directly construct a vector
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space which has the squared dimension,
n=N?
The antisymmetric Grassmann bracket suggests we define

o
(n—1)!

AA' ZZ' _
42842704 * " Oz =gq..z

where the N-dimensional Levi-Civita symbol ¢,..., is zero if there are
repeated indices, one for &;,...5, and changes sign under index permutation.
A,...,Zand 4',. .., Z range from zero to N—1,and q, . . ., z range from
zero to n— 1. Then the tensor g,.... is called the Bergmannian chronometric.
This spin structure is used in Sections 5 and 6.

4.4, Symplectic

The symplectic approach to spacetime is via the symplectic bracket
space. An n-dimensional vector space is used to generate a Weyl algebra of
order n, C, (n even), which has

© (n+k—Di
k=0 k! (n—1)!

= o0 elements

although often the sum is truncated at some maximum value of k in order
to keep the algebra finite. The sum suggests that the spinor space could be
infinite, unless an appropriate cutoff is found. Symplectic spinors are also
called spinsters. The symplectic product suggests we define both

E4BEL D O'ZM,O'fB’ =&ab

and

1
(N-1)!

AA’ zZ' _
Eq...784.70 07 =4z

This spin structure could be related to the Riemannian spin structure when
antisymmetrization is replaced by symmetrization and # is replaced by —n.
Thus, symplectic spinors are referred to as negative-dimensional spinors.

5. RELATIVITY STRUCTURE

5.1. Bergmann Manifold

An n-dimensional manifold is a set (the elements of which are called
points) along with a topology (a guide to tell which points are near each
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other) such that any small region of points can be mapped 1-1 to an open
set of R”. To build an n-dimensional spacetime, we need an n-dimensional
manifold (called the base manifold) and a bracket space. The bracket defines
a chronometric on the base manifold providing properties such as curvature
and size. The group associated with the bracket is called the structure group.
The manifold structure is chosen since it is more general than R”, yet retains
the local R” structure. We choose an N°-dimensional manifold as the base
manifold and the Bergmannian bracket space. Then the complex special
linear group SLy is the structure group, and the Bergmannian chronometric
is the chronometric. Together these form a Bergmann manifold denoted By.
We call the manifold “spacetime” and the points of the manifold “events of
spacetime.”

A fiber bundle is a manifold which is locally M; %X M, for some mani-
folds M, and M,. If M, is a tangent space, then the fiber bundle is called a
tangent bundle. At each event of By we shall place an N*-dimensional tan-
gent space, i.e., a linear vector space, obeying the Leibnitz rule. This describes
a tangent bundle in which M,=By. Each special sesquispinor specifies a
vector in the tangent space of some event of the spacetime. In order for the
N x N complex special sesquispinor to be described by N real variables, we
require it to be Hermitian. Any tangent space can be described by an N-
dimensional complex spin space which is equivalent (i.e., same number of
variables) to an N’-dimensional real vector space. The transformation prop-
erties are determined by applying the structure group to the tangent spaces
of each event of the spacetime. We shall take the spin form ¢,** to be our
field variable, just as the symmetric biform g, is taken to be the field variable
of general relativity. We shall call 6,** the metric form.

5.2. Assumptions of Relativity

We mean to create a theory which retains as much of the general relativ-
ity structure as possible. The following is a list of some principles which are
assumed by the theory of general relativity.

1. The principle of general covariance.

2. Einstein’s equivalence principle holds.

3. The stress-energy-momentum tensor T is the source of the gravita-
tional field g

There exists a four-dimensional, rank-two symmetric chronometric.
. T.»=0 (spacetime is torsion-free).

G* =T (Einstein’s equations hold).

The chronometric is constant under covariant differentiation.

Nova

We now state how these assumptions are changed by the use of a
Bergmannian manifold Bjy.
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Assumption 1. Assumption 1 does not change.

Assumption 2. Local Lorentz invariance requires SO(1, 3, R) sym-
metry. The orthogonal extension to an n-dimensional spacetime requires
SO(1, n, -1, R) symmetry. However, the group of a Bergmannian manifold
By is SL(N, C). Thus, local symmetry on By will be SL(N, C) symmetry.
Notice that the local Lorentz invariance will still hold for the four-dimen-
sional spacetime.

Assumption 3. A tensor T, with indices ranging from zero to N*—1,
will be the source of the gravitational field g*>~. The prefix “hyper”’ is added
to the name when N is greater than two.

Assumption 4. In Assumption 4 the Einstein chronometric is replaced
with an N>-dimensional, rank-N Bergmannian chronometric. This is a special
case of Finslerian geometry (Busemann, 1942).

Assumption 5. Although it is possible to find unique torsion-free con-
nections (i.e., ', =T %,) for Riemannian spacetimes, it is not always pos-
sible for N>2 Bergmannian spacetimes (Borowiec, 1988). Connections with
torsion have N possible independent symbols, while those without torsion
have (N°+ N*)/2. Since Assumption 5 cannot always hold, the connection
cannot in general be expressed in terms of the chronometric and its deriva-
tives. Thus, the action for spacetime has two independent dynamical
variables g.s... and I'“,;.

Since I'‘,; is not necessarily equal to I'%,, there are two independent
differentials for vectors,

Vot = 0p0° + T 0°
or
Vof =0t + 10"
and, respectively, two independent differentials for covectors,
Vv, =050, — T ‘v,
or
V0o =0p0a— I “pav,

For the calculations in this paper, we have used the first definition in each
of the two cases.

Assumptions 6 and 7. Assumptions 6 and 7 can be obtained in gen-
eral relativity by varying an action. These assumptions are discussed in
Section 5.4.
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5.3. Raising Indices

The connection, torsion tensor, curvature tensor, and the (0, 2) Ricci
tensor are not chronometric-dependent quantities. The torsion of spacetime
is defined by T(X, Y)=Vx Y-V X—[X, Y], and yields the torsion tensor

Tu=T =T %
in a geodesic coordinate basis (gcb). The curvature is defined by
RxnZ=VNyVyZ -V Ny Z—Vix v\ Z
and yields the curvature tensor
Roea=T e =T at Tl ‘=T %%l e
The inverse Riemannian chronometric is defined by

g =[co(ga)]/[det(gas)]

which implies gg,. = 8. We require the inverse Bergmannian chronometric
to obey

gMd"'gbcd... =0%

Thus, the N>2 inverse Bergmannian chronometric is not as yet uniquely
defined, except in special cases.

Let I'°,, be the torsion-free connection (i.e., I =I"| 7o) and let K, be
the contortion tensor, K, =(I" ;s —I'“s). For the N=2 case,

T =28 (Quus + Zaba— 8abd)
K= 38geal st 8esTous) — 3T %

which may be derived using equation (4) of Appendix A.1. Notice that for
N=2 the symmetric part of the connection, (I'°,;+1 %,)/2, is not torsion-
free. The (0, 2) Ricci tensor is defined as R, = R°,.. The (1, 1) Ricci tensor
R%, and the Ricci scalar R=R", depend on the (0, 2) Ricci tensor and a
tensor which raises indices.

A two-index tensor which reduces to the chronometric for N=2 is
required in order to raise and lower tensor indices. In a Riemannian space-
time the chronometric fulfills this requirement. There are a few possibilities
for this tensor in a Bergmannian space, all of which reduce to the chrono-
metric for N=2.

1. The Ricci tensor is of the necessary rank, thus suggesting setting
ga» proportional to R, for the N=2 case. In this case Vg, #0.

2. Often Finsler metrics are contracted with vectors to lower the tensor-
ial rank. Perhaps the Bergmannian chronometric along with appropriate
contractions could be used.
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3. Using covariant differentiation to contract with all but two of the
metric indices, T ”=g“b°‘"Tb;c___. In this case Vg, #0.

5.4. Varying the Action

In general relativity p=[—det(g.)]"/? is used to compensate for the

Jacobian in the action. Since o~ (g)'/?, we use p=det[(c°,) '], where a =
AA’, called the chronometric density (note: p is not a tensor). The (1, 1)
Ricci tensor shall be defined by R%,=g"*"R,..... and the action by

S=pR=pg” " Ra..
Using
op= —pO'dAAléo'dAA: -po~ 8o
5g™e = Nob sy 0 ce. 15 FC 5%,
S[Rapic. 1= 8T “asliac.. = [6T “aalite...

and setting 6§S=0, we find
fp{[—Ro‘ ' N80+ g% S[ Rase. 1} d"x =0

where

Ad _ b c ABC... A'BC'..
Ha =0 pp0 cc.€ 4 R

abic...

and where R is the Ricci scalar. Since R, is a function of the connection
alone, and (o, I') are independent variables, we obtain the following two
variation equations:

Jp[—RU“1 +Nu] o d"x=0

fpgabc"' 6[«Rab;c...] dnx = 0

Assumption 6. By contracting the first variation equation with c’4n,
we find

1
Rab—ﬁ 5abR=0

which shall be called the vacuum hyper-Einstein equations (see Appendix
A.3). This equation reduces to the vacuum field equations of general relativ-
ity for N=2.
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For systems with mass, introduce the hyper-stress-energy-momentum
tensor 7%, such that

T =[0"44 6(pLa)]/[xNp 50'bAA']

where L,, is a function of the matter field ¢ and the chronometric. If we
assume the action is additive, i.e.,

S=pR+pLy

then the first variation equation becomes
a l a a
R b '—N ) bR =xT b

By contracting this equation, we find p=—xT/(N—1), where T=T*, (note:

§°,=N?). Thus,
. . 05T
R b=K|:T b—NZ—N]

The Newtonian limit is obtained by setting v<«c¢ and neglecting non-
linear terms in the connection. The following equations are a direct result
of the Newtonian limit (see Appendices A.4-A.6 for derivations in the
Newtonian limit):

cdf>cdt dx>dx dy
d’xF/df =— Ty
Ryo=T kOO,k

T=T%

R% =g00b4.‘1—~ “00,ab...

whk W=

Here k=1,...,n—1 and i=4,...,n—1. From these five equations, we
obtain

& T 00ap.. = =~ KT’ =N~ 1)/(N*~N)
Let p be the mass density and set Too=c’p. Assuming (1)
T =c"¢""py.
and (2) there exists a function ¢ such that
[ 0= (0¢/0x,)/c
i.e., there exists a conservative gravitational field, then

g2V, 1+ k(W= N—1)/(N*~ N)]e*p} 0 »=0
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Also assume that
V2o 1(9)=Q._,Gp

where €, is the solid angle in (n— 1)-dimensional space (Q;=4x). Then
we find

BN o
N—-N—1 "'

This result agrees exactly with that of general relativity for N=2. We then
replace Assumption 6 of Section 5.2 with

1 N*—N G
RY——8%R=——"Qp_,—T°
b N b Nz—-N——l T lcz b

Assumption 7. The second variation equation is

Jpgabc"' 5[Rab;c...] dnx = O

Define the tensor D, by
S(Rab;c...) = (aRab);c... + Dabc.”

Note the following:

(6Rw)—6(Rp) =0 (N=2)
(6Ru) ;= 0(Rupie) = (0T “ca) Rap + (8T “ ) Re (N=3)
(6 Rat);ca— 6(Rapca) = (0T “ac)Rave— Dape:a— Dapare  (N=4)
(0Rup) ca # 6(Rap.ca) (N>2)

Then using the results of Appendices A.7 and A.8, we can write the second
variation equation as

(__ l)N -1 J‘[(pgabc...);mca . (pgaﬂcm);...cﬁé‘ba] 5r aab dnx

+ J‘pgabcmDabc,.. dnxzo

The quantity p is neither a scalar nor a tensor, it is a density. There is
no natural covariant derivative defined for densities. We define p ,=0. Thus,
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the second variation equation can be written as,

(__l)N—l J\[p(gabc,..);mca _ p(gaﬁc...);mcp(sba] araab dnx

+ jpg“b“'“Daba.. d"x=0

For N=2, the second variation equation becomes (see Appendix A.9)
[(gab) @ T (gaﬂ);ﬂ6ba] =0

or equivalently,

Also this equation yields
8ab:c=0
For N=3, the second variation equation becomes (seec Appendix A.10),
[(8™) ca = (€"):cp6"a — 8 (Rac + Rea)] =0
Summing over b and « yields
(8).0p=— g™ Ry, /4

where the 4 comes from (rn—1)/2. The constraint Vg=0 for a Riemannian
chronometric falls out as a result of the second variation equation. This does
not occur for an N>2 Bergmannian chronometric. If we assume g”,.=0,
then

2%(Rye+ Roy) =0
and
g abcRbc = 0

Thus, Assumption 7 shall be unchanged for N=2, but quite different
for N>2.

This concludes the changes made to the assumptions of general
relativity.

6. “SPHERICALLY” SYMMETRIC BERGMANNIAN
CHRONOMETRIC

6.1. SUy Invariants

The set of N x N unitary matrices with determinant one is a representa-
tion of the special unitary group [often denoted SU(N, C) or SUy], which
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has N”— 1 parameters. SLy can be decomposed into spatial rotations, repre-
sented by the group SUy, and boosts, represented by the space R ™!, once
a time axis is chosen.

If x=T(x), then x is said to be invariant under that transformation. If
an object is invariant under all transformations 7 defined by elements of a
group, then the object is said to be invariant under that group. For example,
the set of 3 x 3 orthogonal matrices with respect to the identity represent the
rotation group denoted O(3, 0) or O;. When a vector is transformed under
03, that vector undergoes a rotation in the three-dimensional space. The
magnitude of a vector dr given by dr* = dx” + dy” + dz* does not change under
rotation. Thus, r is said to be Os-invariant.

Just as one might change from rectangular coordinates to spherical
coordinates, we will change from the N complex special sesquispinor coordi-
nates to the N” real coordinates, such that some of the variables are SUy-
invariant (such as the time and radius coordinates of orthogonal spacetime).
The special sesquispinor contains a complete description of an event in
the Bergmann spacetime and can be represented as a matrix, so changing
coordinate systems can be accomplished through similarity transformations
of the special sesquispinor. The trace of a matrix is always invariant under
similarity transformations; therefore the trace is SUy-invariant. We choose

t=<X>E%(trace X)

to be the time coordinate. Since this is the only linear invariant, we will not
include any other time dimensions in this theory. Thus, no special
assumptions are necessary for local causality, i.e., Bergmann spacetimes are
inherently causal for all N. Let the spatial spin matrix be defined as

Xs=X—<{(X>00

X describes an (N? — 1)-dimensional manifold which we shall call space. The
determinant of a matrix is also invariant under similarity transformations;
therefore other SUy-invariants can be found through the characteristic poly-
nomial of the spatial spin matrix; [det(Xs— Aoo)=0]. The solution to this
equation yields N—1 independent SUy-invariants of degree 2 through N,
respectively, given by

a N —m
rm= (=Y ! [a:| [det(Xs— A00)] | =0

for m=2,3,..., N. The minus sign is chosen such that r, will be positive
for all N. Then r,, is the mth-order SUy-invariant with r;=1.
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The orthogonal group O, has one invariant, r=(x,°+" - - +x,’). The
unitary group SUxy has N—1 invariants, r, r3, ..., Fy. The O,invariant r
is of order 2, while the SUy-invariants r,, are of order m. So for spacetime
dimensions n>4 (n= N?) there are more SUy-invariants than O,-invariants.
These SUx-invariants can be written as

1 , ,
_ A1A And
"N—iN_' Eay AnEd. Ay XS XGVH

= . sAA Ay | yAnAN
FN—1= €A1...AN8A1...AN5 X5 Xs

:t__.—
nN-1)!

_ 1 A4 Ay oAy =2 yrdy 1Ay — 1 Andly
P=%38 4 ayEd4. 40 RN X5 s XSV

1
t=:hﬁ 5ABXAB

where the delta symbols &4z and 6% are one if 4=B and zero otherwise
and where the N-dimensional Levi-Civita symbol €45 ¢ is zero if there are
repeated indices, one for £y, » and changes sign under index permutation.

6.2. Omega Space

There are N SUy-invariants, so we need N> — N angles to complete the
set of coordinates for the N>-dimensional hyperspace. We shall call the space
of angles the omega space. A method of determining these angles requires
the group theory concepts of coset, normal subgroup, and factor group.

If S is a subgroup of the group G, then a left coset is defined by {gs|seS}
and a right coset by {sg|seS} for some element g of G. Each element of G
defines a left and a right coset of S in G. Two left (right) cosets are either
identical or have no elements in common. Therefore a complete set of left
(right) cosets can be obtained by using all elements of G to define cosets and
removing any repeats. This complete set of left (right) cosets partitions G.

S in a normal subgroup of G if for all g in G and for all sin S, (gsg~ ') €S.
As an example, let G be a group represented by matrices, and let {G] denote
the subgroup of G consisting of diagonal matrices in G. Since diagonal
matrices commute with all matrices, [G] is a normal subgroup of G. For all
normal subgroups the left coset and right coset generated by g are the same.

A factor group (denoted G/S) consists of elements which are cosets of
S in G, where S is a normal subgroup of G. This group is also called the
quotient group. G/[G] is an example of a factor group.
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An element of [SUy] can be written as the matrix
diaglexp(—ia,/2), ..., exp(—ian—1/2), exp(i(a; +- - - +an-1)/2)]
These diagonal elements are called the eigenvalues. Define
GNESUN/[SUN]

and call this group the globe of SUy. The number of parameters for G”
is (number of parameters in SUy)— (number of parameters in [SUx])=
(N*—1)—(N—1)=N*—N, which is the number of angles required for the
omega space. We set G to represent this space.

The spatial spin matrix X5 may have degeneracies among the cigenval-
ues (also recall X is traceless). The case where there are no degeneracies is
called regular. Singularities in the spacetime metric fall into two categories,
coordinate-dependent singularities and true singularities. The Earth’s geo-
graphic poles and the Schwarzschild radius r=2M are examples of coordi-
nate-dependent singularities, since observers passing these points would see
no physical significance to these points. Singularities do not occur in the
regular parts of spacetime unless there is a black hole present. Thus, to find
black holes, first search the regular parts of spacetime for singularities.

We partition Gy into the following classes of degeneracies:

N=2 * % r,=0 (origin)
* /% rs>0 (regular)
N=3 * ok ok r3=r,=0 (origin)
* % /% Bn=ar3#0
/%% rs#ar (regular)
N=4 * ok kK ra=r3=r,=0 (origin)

* % x/% ri=ﬂrg=7rg;é0
* k% re=08r#0,r;=0
* % /% /% Mess

*/% /% /% All else (regular)
where
92 33 33 1
=_33 ﬁ=—4> ’}/Zhﬁa 5:__
3 10 6 4

The fully degenerate case is called the origin, while the fully nondegenerate
case is called the regular portion of G”. There are Py classes for each spinor
dimension, where Py is the number of partitions of N. Each class, called an
orbit, contains all events of spacetime which can be rotated into each other.
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The intersection of any two classes is the null set and the union of all the
classes is Gy. The fully degenerate class has but one event, the origin. The
N=3 and N=4 results above suggest that the regular parts of spacetime can
be approximated as the union of solid cones.

6.3. Two-Spinor Example

The following examples illustrate the previous concepts for the case
of N=2.

A set of constant spin matrices called the Pauli spin matrices are given
by

. (1 0) . <o 1) . (o —i) . (1 0)
p— y O': , = ) y =
9o 1 o TU o =0 -1

A special sesquispinor can be described by

. . . . t+z x-—iy
X2=t0'0+x0'1+y0'2+20‘3= ,
x+iy t—z
Then the characteristic polynomial of the spatial spin matrix is given by
det[X,—~(t+A)So]=A>—r,
and the SU,-invariants are then
X>=t
rh=x"+y"+2
An arbitrary element of SU, can be written as
Ua. B.7) ( DR cos B2 £ sinﬁ/2>
a, ? = —_7 _ . _l
D7\ gmivman sin 8/2 e T2 cos B/2
An arbitrary element of G* can be written as

~iw/2 g (e”/z 0 ><cosﬂ/2 SiH,B/2>

e
Q(ﬂ,7)=< 0 eia/Z)U(a’ﬂ’y)= 0 e 7?/\—sinB/2 cospB/2

The spacetime variables for the “spherically” symmetric spacetime are
then given by (¢, r2, Q), where Q= (7, f).

6.4. Three-Spinor Example

The following examples illustrate the previous concepts for the case
of N=3.
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A set of extended spin matrices is given by

1 00 010 0 —-i 0
Go=|0 1 0}, ég=|1 0 0} G,=ti 0 0}
0 0 1 0 00 0O 0 0
0 0t 00 —i
6'3= 0 0 0, 64—0 0 0 s
1 00 i 0 0
0 0 0 0 0 O
6s=|10 0 1] Ge=|0 0 —iy,
010 0 i 0
1 0 0 ) 1 0 O
G;={0 —1 0}, Gs=— 1 0
0 0 O V3 0 0 -2

A special sesquispinor can be described by
X3=180+t X161+ %262+ 163+ 1284+ 1365+ yaGe+ 2167+ 2265
Then the characteristic polynomial of the spatial spin matrix is given by
det[Xs— (t+A)So]=— A +rd—r;
and the SUs-invariants are
X>=t
rs=on[(yi+y3+ )3+ ) = 2xi+ o+ 2+ )]+ zlyi+y3-yi-yil
+ 21 (y1ys T y2pa) +x2(y2y3—y1ya)l
R=xi+x3+ i+ i+ i+yiti+z
An arbitrary element of SU; can be written as
Ulay, ..., as)=0(as)Q(a7) - - - Qlai)
where
QO(a;)=1cos(a;/2) + o, sin(a,/2)
An arbitrary element of G* can be written as
Qai,...,ae)=0"(a)Q (ag)Ular, . .., as)

The spacetime variables for the “spherically” symmetric spacetime are
(t,r2,r3,Q), where Q=(a;, ..., ).
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6.5. Chronometric Constraints

The time translation operator is 7,=(x — x+ Atd ). The time reversal
operator is T,= (¢t — —t). The invariant for Bergmann spaces is

AtV =g dx*dxP dx° . ..

We shall require g to be invariant under 7, and 7,. T, requires that g be
independent of time and 7, requires that df appear in the volume element
with only even powers for N even, or either odd powers or even powers for
N odd (depending on the required sign change of dr”). The only linear
scalar that can be constructed with the omega space is (dQ )%, so no other
powers of dQ shall appear in the volume element.

For N=2, these requirements (along with Einstein’s equations) yield
the Schwarzschild metric. For N=3 they yield

di’=dt (M df +N,, dx* dx*); u,v=1,...,8
=dt (e” d* — " dr” — ¢" dp* — R* dQV?)
=dt (¢” df* — " dr* — ¢* dp® — R*f,,5 dO° d*) (1)
where f,s=fp. and a, f=3,...,8; or
de® =dx" (3800 A+ gy, dx” dx”);  p,v,y=1,...,8
=(A, dr+ B, dq) d* — (A, dr+ B, dq)(¢" dr* +¢" dg*)
(A; dr + B, dg) dO* ()

1/2 1/3

where R, o, A, A;, and B; are functions of r=(r,)"/* and p=(r3)

To find flat spacetime, let
dQ=w=1=0
A;=B;=1
and let ¢ return to ¢t in the volume element equation:

1. di’=cdt [(dt)’ =Y (dx;)*]
2. dv’=(dr+dg)[(d)’ - (dx)’]

To find the light cones, set dt equal to zero.
1. N=2:

d)
;Z: +c (usual light cone)
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2 1/2
2[4+
dt dt

2. N=3, formula 1:

3. N=3, formula 2:

2 1/2
<-4
dt dt
dr _d_p

e dt

Setting dp/dt equal to zero yields interesting results. Then for N=3 the
first equation for each formula is equivalent to the usual light cone. For
formula 1, the new light cone restriction, dt =0, will separate the past from
the present, which does not conflict with physical phenomenon. For formula
2, the new light cone restriction, dr/dt=0, is not as satisfying.

For N=3 let:

L or=(r)"? p=(rs)"".
2. R, w, A are functions of r, p only.

3. faﬂ=fﬂa; a, ﬂzl,. .., 6.
4. dp/dt=0.

In conclusion, we suggest the nine-dimensional spacetime interval
dr’=dt (¢ dt’ — ¢ dr* — e" dp*— R*f,.; dO* d6*)

as a “spherical” symmetry analog to the four-dimensional Schwarzschild
invariant.

APPENDIX A. DERIVATIONS FOR SECTION 5
Al |
Assume

gab;c = 0
Then
Bbca™ 0
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and
Beap=0
So
gab.c*gdbrdca—gadrdcbi 0 (AD)
Goea—8al “ap— goal 2 =0 (A2)
8eap = &aal' dbc_gcdr %a=0 (A3)

Combining (A3)+(A2) — (A1) =0 yields

Zeap ™ 8bea ™ 8abe™ gda(r dbc =T dcb)
- ga’b(r dac - cha) - gdc(r dab + I“dba) =0

Recall that T, the torsion tensor, is given by
Fdabz 1-‘dba'{_ Tdab
Then,

Zeab+ Goca— Gabe — uaT e = 8avT ac = gael [T %ap+ T %) =0
g ael oo gaT %y
= (8eab T 8roa™ Lasc) T (€aaT oo+ g T ) (A4)
{ab, c]+[ba, c}+ Cope+ Tope
Let T°,=0 (torsion-free). Then T.=0. So

[ab, C] + [baa C] = Cabc

A2
Assume
Labea=0
Then
Zbedia=0
Zedap=0

gdab;c=0
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So

8abe.a— Bebel “da— 8acel “ab— avel ‘ac=0
8bcda™ Zecdt ‘ab~ 8bedl ‘ac— 8beel ‘aa=0
Gedap — Gedal b Geeal ‘ba— Geael ba=0
8aab,c ~ Leabl “ca— Baenl “ca— Ganel ‘=0

1639

(A5)
(A6)
(AT)
(A3)

Combining [(AS5) + (A6)] —[(A7) + (A8)] =0, and following the same pro-

cedure as that of Appendix A.3, we obtain
[ad, bC] + [bC, ad] = Cabcd— Tabcd
Let T,,=0 (torsion-free). Then Tosa=0. So

[ad, bel + [be, ad]= Capea

A3
Let

S = pgabcm—Rab;c.“
Then

08=[-po,**66"44)g"" Rass..

+PRab;c__,[No'bBB’ Cce - GABC GABC | 56 1]
+f(oT)
6S i
6GaAA’ [ PO, ]
+NpRab;c...0-bBBr0'cCC, P gABC...SA’B'C"_.

Set the above equal to zero, and contract with ¢%,4:

[6°44 6. R+ Rup,e 0% 440°550°ce - -+ 86 gF .- 1=0
_'5aaR -+ NRab;c...gabcm =0
—-6%R+NR%,=0

1
Rab_Xf 5“bR=O
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A4
We have

Rip=T =T uup+ Tl =Tl %,

For the Newtonian limit, products of I" vanish,

Ry =T pae=T “cap
Then

Roo=T 00— T “c00
For the Newtonian limit, time derivatives vanish,

Ry=T coo,c

Since we have set

Rab =gabcmRab;c.,.

we obtain
R = gOOC"'Roo e
and
R%= gOOb"' [T %00.a) 5.
AS
Recall,

RYy=x[T%— 6%T/(N*~N)]
Ry =«[T%—T/(N*—N)]

For the Newtonian limit, 7= T°,. We have
Rly=kT%[1—1/(N*—N)]
Rly=xT°%[(N°—N-1)/(N*—N)]

From Appendix A.4

Ro=g"""[T %004l ..

Thus,

g% [0 al .. = Kk T°[(N* ~ N—1)/(N*~N)]
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A.6
Let

0=~ (0¢/0x,) /"
Then,
‘Cz[raoo,a] b [aa(aa¢ )] ...

=[0.0°9 1.s..
=[Va-1(8)]s.

2 _00b..

Assuming T %=c g P, and using Appendix A.5, we find
g {(Va-i(¢ ) +K[(N*~N~-1)/(N*~N)Ic*p} 0. =0
We set

Vioi(¢ )=—k[(N*~N-1)/(N*=N)]c*p

A
We have

Rab = [raab,a - raaa,b + 1-ﬂﬂabraﬂa - rﬁaaraﬁb]
In a local coordinate basis,

OR,= 5[Faab,a] - 5[Faaa,b]
Since § commutes with partial derivatives,
SR =[0T"0]a —[6T "2l
Since we are in a local coordinate basis,
SR =[0T"s).a —[6T a0l
This equation is tensorial, it is true in any coordinate basis. Note that this
equation is true for any dimension N. For N= 2, this equation is the Palatini

identity. Thus, for N>2, we shall call this equation the hyper-Palatini
identity.
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A8
We have

I= J\pgabc...[aRab] .. dnx

= Jpgabc"'[(5raab;a = 6T %) ] d"x
Integrate by parts N—2 times (boundary times vanish)
I=(-D)"7? f[pg“b”‘"] el (OT %apsq = 6T % aa )1 d"x
Integrate by parts once more for each term,

I=(—)N™! J [(PE™ ) ca = (PE),.cp0 6] ST %0 d"x

A9
For N=2,
Dab =

So the second variation equation is
fp[(gab) e (gad) ;d5 bc] 5rcab d4x =0

Thus, set
[(g") = (g"):a6"1=0
Recalling g*>=g", the only solution to this equation is
g.=0
By lowering the indicies via the chronometric, we also find
8ab:e=0
A.10
For N=3,
Dape=(8T")Rup + (8T %) Roa
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So the second variation equation is

(-1)? I [P(8") ;0= P(&™)10e8 a] 6T e d°x

r

+ | pg™[Rap ST gue+ Rog T4 d°x=0

o

or rearranging the dummy indices,

™~

[p(gabC) ied ™ P(gaec) ;c26 bd

+ pgabC(Rdc + Rcd] 5rdab dgx =0
Thus, set
(gabC) H (gaeC) ;065 bd+gabc(Rdc + Rcd) =0
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