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We explore an avenue of higher-dimensional spacetimes based on generalized 
spinors which transform under the special linear groups and result in spacetime 
dimensions which are squares of integers. The Bergmannian chronometrics are 
not Riemannian, but Finslerian in the higher dimensions. The general concept of 
bracket space is introduced in order to show a variety of routes to hyperspace. 
The field equations found generalize Einstein's by replacing a factor of two by 
the spinorial dimension. A mass term is introduced in the action, which results 
in a hyper-stress-energy-momentum tensor. The chronometric is not required to 
be covariantly constant under the hyper-Palatini variations: there is torsion. 
"Spherical" symmetry in this spacetime is explored, an appropriate set of coordi- 
nates is introduced, and the invariant for nine-dimensional "spherical" symmetry 
is given. 

1. I N T R O D U C T I O N  

The Q u a n t u m  Topo logy  W o r k s h o p  at Georgia  Tech has pursued the 
possibility o f  describing higher-dimensional  spacetimes using quan tum 
spinors (Finkelstein r al., 1985, 1987; Finkelstein, 1987; Holm,  1986, 1987, 
1989). Section 2 o f  this paper  treats the Bergmannian  chronometr ic  as an 
alternative to the Riemannian  chronometr ic .  The concept  o f  a bracket  space 
is in t roduced in Section 3 to connect  several concepts  o f  hyperspace in a 
logical fashion in Section 4. 

The four  subsections o f  Section 5 are devoted to one sequence o f  hyper- 
spaces suggested by the Bergmannian  chronometr ic .  Section 5.1 describes 
how the chronometr ic  is placed on the spacetime. Section 5.2 lists 
assumptions  used in general relativity and then describes how the list has 
changed due to this part icular  higher-dimensional  generalization o f  general 
relativity. Section 5.3 evaluates a few possibilities for  raising and lowering 
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tensor indices. Section 5.4 contains the derivation of the higher-dimensional 
equation of motion for this spacetime, obtained by varying an action. The 
action chosen is similar to that of  general relativity. The hyper-stress-energy- 
momentum tensor is introduced in Section 5.4 and the Newtonian limit is 
examined to find the kappa coefficient. The hyper-Palatini method is intro- 
duced and yields a different result than the usual chronometric constancy. 

In Section 6 we generalize the Schwarzschild spherically symmetric 
spacetime. The coordinates include one time axis, N -  1 radial scalars, and 
N(N- 1) angles. The last subsection of  Section 5 examines the N =  3 case, 
i.e., nine-dimensional "spherically" symmetric spacetime, and an invariant 
spacetime interval is found. 

2. CHRONOMETRICS IN HYPERSPACE 

2.1. Einstein Chronometric 

In special relativity d r  2 = c 2 clt 2 -  d x  2 - @2 _ d z  2 is the invariant interval 
between spacetime events. From here on we set c = 1 to simplify the equa- 
tions. The invariant for special relativity is often written as 

d r  2 = 7Tab d x  a d x  b 

where a,  b = O ,  1, 2, 3 and where 7700 = 1, r/11 = r/22 = 7733 = - 1, all other com- 
ponents are zero, and d x  ~  dr,  d x  ~ = d x ,  d x  2 =  dy ,  d x  3 =  dz .  This matrix, 77, 
is called the Minkowski chronometric. 

A chronometric describes the spacetime interval, while a metric in the 
topological sense describes the distance between two points of space. A 
chronometric is not a metric. However, when the meaning is clear in context, 
"chronometric" is abbreviated by "metric." 

In curved spacetime the interval is generalized to allow cross terms and 
to allow functions of  spacetime in front of the terms. Then the invariant is 
of  the form d r  2 = gab d x  a d x  b, where a, b = 0, 1, 2, 3. The gab are then com- 
ponents of the Einstein chronometric. These components are the real coeffi- 
cients which describe the gravitational field. Due to the form of  dr  2, we can 
let gab = gb, without loss of generality. 

2.2. Riemannian Chronometric 

The n-dimensional Riemannian extension of  curved spacetime is defined 
by setting a and b to range from zero to n -  1 instead of 3, while keeping 
the form of  the invariant dr 2 = g a b  d x  a d x  b, where a, b = 0, 1 . . . . .  n -  1. Then 
the gab are components of the Riemannian chronometric. The Riemannian 
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extension of  curved spacetime seems natural  when the invariants are pre- 
sented as in the previous section. An example of  the Riemannian extension 
is the Kaluza-Kle in  extension to n - -5  to include electromagnetism, where 
g s o = A o  and gsi = A,- and where A is the electromagnetic potential (A is a 
gauge field). Often the higher dimensions are used to include gauge fields in 
curved spacetimes. 

2.3. Spin Form 

The chronometric is taken as the fundamental variable of  spacetime for 
relativities based on the Riemannian chronometric. We shal l  take as the 
fundamental  variable a tensor object called the spin form. The following 
discussion on vectors, tensors, spinors, and spin forms is in preparat ion for 
the section on the Bergmannian chronometric. 

For  every vector space V, there exists a dual vector space V D, a complex 
conjugate vector space V*, and a complex conjugate dual vector space 
V *D. Denote the components  of  elements of  V by xa; those of  V D by xa; 
those of  V* by xa'; and those of V * ~  by xd. These spaces can be defined as 
follows: 

1. V D = { f l f :  V ~ C ; f l i n e a r }  
2. V *D= { f l f :  V ~  C;fan t i l inear}  
3. g * =  { f J f :  g * D - - , C ; f l i n e a r }  

I f  you think of  V as column vectors, then think of  V D as row vectors, V* 
as column vectors, and g D* as row vectors. Recall that a row vector times 
a column vector equals a number. 

A tensor in 

V ~ |  �9 �9 | V D|  V |  �9 �9 | V |  V * ~ |  �9 �9 | V *~ |  V * |  �9 �9 | V* 

can be defined as an element of  the class 

T =  { f [  f :  W ~  C ; f  multilinear} 

where 

W = V x .  . . x V x  V D x .  . . x V D x  V * x .  . . x V * D x .  . . V  *D 

T is said to be a tensor of  type (p, q; r, s), where p is the number  of  VO's ,  

q the number  of  V's, r the number  of  V * D ' s  and s the number  of  V * ' s  in 
W. Thus, a tensor component  has indices which are raised, lowered, raised 
primed, and lowered primed. The components of  a tensor are dependent on 
the basis vectors, basis dual vectors . . . . .  Changing from one basis set to 
another  yields a t ransformation of the tensor components.  

Let flat spacetime be represented relative to an origin by a real n- 
dimensional vector space Vn with vector elements represented by components 
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x a (i.e., small indices). Similarly, let the spin space be represented by a 
complex N-dimensional vector space S N  with spin-structure elements repre- 
sented by components x A (i.e., capital indices). The homomorphism between 
the Lorentz group and the spin group is such that the homogeneous Lorentz 
group is doubly covered by the spin group, which implies that the product 
S N  X SN* corresponds to an N2-dimensional vector space. The components 
of tensors on SN x SN* are represented by x AA'. In Section 4, we shall require 
x AA" to be Hermitian. Then x AA' will have fewer independent components 
than two full spinors. For this reason one calls x AA' a sesquispinor (one and 
a half spinors). The components x A'4' of the sesquispinor can be mapped to 
a component x a of the vector by 

X A A '  ~ 0 " a A A ' x  a 

where 0"a ~a' is a spin form. 

2.4. Bergmannian Chronometric 

Since spin is basic to the structure of quantum mechanics, we look to 
spin as the basic structure of relativity in the desire to combine both concepts 
(quantum mechanics/relativity) into one theory. 

One way to represent the spin form in four dimensions is by using the 
2 x 2 identity matrix 6-0 and the three Pauli matrices ~1, 6-2, 6"3. A sesqui- 
spinor X may be expressed as X = t 6 - o + X s ,  where X s = x 6 - 1 + y 6 - 2 + z d y 3 .  

Then the invariants for Newtonian physics are given by dxZ-~dy 2-'~- dz 2= 
d e t ( d X s )  and d t  = �89 trace(dX). The invariant for special relativity is 

de; 2 = d t  2 - d x  2 - d y  2 - d z  2 = det(dX) 

In curved spacetime this concept can be extended to any linearly inde- 
pendent set of four 2 x 2 Hermitian matrices represented by the symbols 
0-o, 0-1, 0-2, 03, with X =  t0"o+X0"1 +y0"2+z0"3. Then the curved spacetime 
invariant is (Penrose and Rindler, 1986) 

d r  2 = gab d x  a d x  b = det(dX) 

The N2-dimensional extension of curved spacetime which we consider here 
uses a linearly independent set of N x N Hermitian matrices with indices 
ranging from zero to N 2 -  1. The invariant for this new space is 

d'c N= det(dX) =gabc... d x  a d x  b d x  c �9 �9 �9 

where g has N indices. The gab .... are called components of a Bergmannian 
chronometric. This chronometric is symmetric and linear. The gab .... are 
called components of the inverse Bergrnannian chronometric. Although the 
Riemannian and Bergmannian chronometrics are equivalent for four-dimen- 
sional spacetime, they are distinct for higher dimensions. 
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3. BRACKET SPACES 

3.1. Introduction 

General relativity is often expressed in tensor formalism, or in spinor 
formalism, which includes the tensor formalism and is more fundamental. 
There are three higher-dimensional spin structures which reduce to general 
relativity for n = 4: Riemannian spinors, Bergmannian spinors, and symplec- 
tic spinors. Each of these three spin structures can be used to extend general 
relativity from four dimensions to higher dimensions. To see the difference 
between the spin structure approaches, we introduce the unifying concept of 
the bracket space which is used to define the associated spin structure. Each 
spin structure follows from a particular bracket space. The spin structure 
depends on a bracket group and a bracket algebra. It is important that one 
stays within one bracket space when building a spin structure. 

3.2. Bracket Space 

A bracket space { V, [ ], A} is defined by the following three structures. 
1. A vector space V (typically N" or C") over a field F (typically R 

or C). 
2. A bracket [ ]. Let k V -  V @ .  �9 �9 @ V, where there are k vector spaces 

entering the direct sum. A general element of k V shall be designated 
by B. A bracket [ ] is a map f :  kV--+ F linear in each factor V (i.e., 
multilinear in V). We call k the degree of the bracket. 

The group of a bracket [ ] is the group Gt] of linear transformations 
of V that preserve the bracket, i.e., for any linear transformation M, Vxie V, 
f ( M X l  . . . . .  M x k )  = f ( x l  . . . . .  xk). Once the bracket is chosen, the group is 
determined. 

Let & be the symmetric group acting on the k vectors of k V. We 
postulate the existence for each x e & of a semilinear (i.e., linear or antilinear) 
map 

with 

13(x) : k V ~ k V  

13(xy) = 1 3 ( x ) 1 3 ( y )  

13(1) = 1 

and satisfying the bracket relation 

[x f l (x)B]  = [B] 

where x is an element of &.  
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3. A linear free associative algebra A. This is defined when a bilinear 
product  (3 is given to the vector space V, such that 

VXl , X2~ VIx1 (3 x2~A 

and 

Vx,y,z~A', x G ( y Q z ) = ( x Q y ) G z  

where (3 is distributive over addition. 
Let 17 be the multilinear product operator 

I-I: kV--* A' 

FIB = 1-I(Xl •" �9 �9 G xk) = xl (3" " " (3 xk 

Define the symmetrizing operator  Y~E1 which operates on an ordered k- 
tuple to result in a sum of ordered k-tuples which have the same symmetry 
as the bracket, by 

z 
x~Sk 

It  can be shown that 

(]BE 1) 2 = Zt 1 

We postulate that for some c~A and all f l~kV and all a~A, 

l i e  E 1B = [B] 

ea=ae 

Then { V, [ ], A } is a bracket space. 
The bracket space thus has associated with it the following auxiliary 

structures as well: 

Sm a symmetric group 

fl(x) a bracket conjugation 

Gtl a bracket group 

an element of  the center of  A 

The following are four examples of  bracket spaces, three of  which we 
will use to build associated spin structures. 

3.2.1. Orthogonal Bracket Space 

Let V be a real Hilbert space, i.e., V= ~n, F =  ~, [ ] = the dot product. 
An n x n square matrix has signature ( a , / 3 )  if it can be transformed by a 
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similarity transformation to a diagonal matrix which has a entries + 1, /3 
entries - 1, and (n - a - /3)  entries zero. Every real symmetric matrix can be 
transformed in this way. Let S be a nondegenerate symmetric matrix with 
signature (k, n - k ) .  The dot product is given by f ix ,  y)= {x, y} =-xrSy. 
Thus, 

f (Mx,  My) = (Mx)'rs(My) = x'r(MrSM)y 

So the group associated with the dot product is the group of all matrices for 
which MrSM=S, the orthogonal group O(k ,n-k ,  ~). Notice that 
O(a, b, R) is the same group as O(b, a, ~). The dot product is symmetric; 
thus the permutation subgroup is $2 = (1, X),  represented by/3(x) = identity. 
Thus we generate an algebra by 

I-IE + (xl @ x2)= {Xl, xz}e 

which can also be written as 

� 89  

where e is defined as the identity. This is the (orthogonal) Clifford algebra. 
Thus the orthogonal bracket space is given by 

{ R n, dot product, Clifford algebra} 

with auxiliary structures 

{$2, identity, orthogonal group, identity} 

3.2.2. Symplectic Bracket Space 

Let Vbe a symplectic space, i.e., V= ~2n, F =  ~, [ ] = symplectic bracket. 
Let J be an n • n nonsingular antisymmetric matrix. The symplectic bracket 
is given by [x, y] = xrjy. Thus, 

f (Mx,  My) = (Mx)rJ(My) = xT(MrJM)y 

So the group associated with the symplectic form is the group of all matrices 
for which MTJM=J, the symplectic group Sp(n, R). [Do not confuse 
the symplectic group with the infinitesimal symplectic group, the group 
of all matrices K satisfying the relation KrJ+JK=O or equivalently 
(eSX)rj(eSX) = J for all numbers s.] The symplectic bracket is antisymmetric; 
thus the auxiliary symmetric group is $2 = (1, X), represented by/3(1) = 1, 
f l ( X ) = -  1, which we write as fl(x)= ( -1)  x. Thus, we generate an algebra 
by 

HE_ (xl | x2) = [xl, x2]e 
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which can also be written as 

�89 (S)y - y  Q) x = [x, y]e 

where e is the identity. This is the Weyl algebra (or the symplectic Clifford 
algebra). 

Thus, the symplectic bracket space is 

{ ~n, symplectic bracket, Weyl algebra} 

with auxiliary structures 

{$2, ( - 1 )  x, symplectic group, identity} 

3.2.3. Hilbert Bracket Space 

Let V be a complex Hilbert space, i.e., V= C N, F =  C, [ ] = ( > = inner 
product. The inner product is given by [x, y] = <x, y> =x*y. Thus, 

[Mx, My] = (Mx) t (My)  = x t ( M t M ) y  

So the group associated with the inner product is the group of all matrices 
for which M t M  = 1, the unitary group U(n, C). The inner product is complex 
conjugate symmetric; thus, the permutation subgroup is $2 = { 1, X}, with 
/3(1) = 1,/3(X) = Hermitian conjugate = t, written/3(x) = t x. Thus, we gener- 
ate an algebra by 

rlY~H( XII-I (~ X2) = < Xl, x2>e 

which can also be written as 
l ~(xQ)y +y*@x)=<x ,y > e  

where e is defined as the identity. We call this algebra the Dirac-Hilbert 
algebra. 

Thus, the Hilbert bracket space is given by 

{C n, inner product, Dirac-Hilbert algebra} 

{S~,, t x, unitary group, identity} 

3.2.4. Grassmann Bracket Space 

Let V be a Grassmann space, i.e., V = C  N, F = C ,  [ ]=Grassmann  
bracket. Let x~ . . . . .  XN denote the determinant composed of the vectors 
xl . . . . .  XN as columns. The Grassmann bracket is given by 

I x , , . . . ,  = I x ,  . . . . .  
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Thus, 

[Mxl . . . .  , MxN] = I Mx~ . . . . .  MXN[ 

=(de t  M)Nlx l  . . . . .  XN[ 

= (det M ) U [ x l , . . . ,  xN] 

So the group associated with the Grassmann bracket is the group of  all 
matrices M for which (det M)  N= 1. The subgroup which is connected with 
the identity is called the special linear group, SL(N,  C). The Grassmann 
bracket has the symmetry (-1)P: = 1 for even permutations p, - 1  for odd 
permutations p. Thus, the symmetric group is SN, represented by f l (x)= 
(-1)x.  Thus, we generate an algebra by 

I ' ~ - -  (Xl  ( ~ "  " " ( ~  X N )  = [Xl . . . . .  X N ] E  

which can also be written as 

and 

xi v xj + xj v xi = O 

X 1 V "  " " V X N  = [X 1 . . . . .  X N ] E  

where E is a top (defined" below). This algebraic product is called the join. 
I f  the identity were used in place of  the top, then the bracket algebra in this 
case would be the field algebra. 

There exists a basis {bl . . . . .  bN} such that [b~ . . . . .  bN] = 1. Choose 
such a basis and define E =  bl v .  �9 �9 v bN, called top. 

The join x v y has a natural companion called the meet x ^ y defined by 

(Xl  V"  " " V X k )  A ( X k +  l k  v "  �9 �9 v Xm)  = [ x  1 . . . .  , Xm] for m = N 

=0  for m < N  

The top E is an identity for the meet. The algebra with this combination of  
join and meet is called the Grassmann double algebra (Barnabei et al., 1985). 

Thus the Grassmann bracket space is given by 

{C N, Grassmann bracket, Grassmann algebra} 

with auxiliary structures 

{SN, (--1) x, SLu,  top} 
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4. PATHS TO HYPERSPIN 

4.1. Spin Structures 

A vector space and a spinor space are associated through the spin form. 
We discuss elements of  three spin structures which are used in physics to 
investigate higher-dimensional relativity. These three cases are called 
Riemannian, Bergmannian, and symplectic. For the Riemannian and sym- 
plectic cases the spinor space is constructed from the vector space, whereas 
in the Bergmannian case the vector space is constructed from the spinor 
space. Each structure uses constructs from one of the bracket spaces. 

4.2. Riemannian 

The Riemannian approach to spacetime goes via the orthogonal bracket 
space. An n-dimensional real vector space is used to generate a Clifford 
algebra of  order n, Cn, which has 

n, 
= 2 n elements 

~ k! (n-k)! k=o k = 0  

(Budinich and Trautman, 1988). The elements of  this algebra are then used 
to construct a spin space. The dimension of  this spin space is on the order 
of the square root of  the algebra dimension, 

N = 2 "/2 for n even 

N = 2  (n-1)/2 for n odd 

The symmetric dot product suggests we define 

AA" BB' 
~'AB~ O"a (~b = gab 

where eAB is an antisymmetric tensor, A and B range from zero to N -  1, 
and a and b range from zero to n - 1 .  Then the tensor gab is called the 
Riemannian chronometric. This spin structure is commonly used in higher- 
dimensional relativity. Since this case is the most common, the term "spinor" 
is often used, implying the term "Riemannian spinor." The context will tell 
which spin structure is being used. 

4.3. Bergmannian 

The Bergmannian approach to spacetime is via the Grassmann bracket 
space. An N-dimensional spinor space is used to directly construct a vector 
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space which has the squared dimension, 

n =  N 2 

The antisymmetric Grassmann bracket suggests we define 

1 
~ A ' " Z ~ A  ''. .Z '  (~JA '  Z Z '  . . . .  ~Yz = ga...z 

( n -  1)! 

where the N-dimensional Levi-Civita symbol eA...z is zero if there are 
repeated indices, one for c12...N, and changes sign under index permutation. 
A . . . . .  Z and A ' ,  . . . .  Z '  range from zero to N -  1, and a . . . . .  z range from 
zero to n -  1. Then the tensor ga...~ is called the Bergmannian chronometric. 
This spin structure is used in Sections 5 and 6. 

4.4. Symplectic 

The symplectic approach to spacetime is via the symplectic bracket 
space. An n-dimensional vector space is used to generate a Weyl algebra of 
order n, C~ (n even), which has 

~ ( n + k =  1)! 
k=o k.t ( ~ -  1-~.v = ~ elements 

although often the sum is truncated at some maximum value of k in order 
to keep the algebra finite. The sum suggests that the spinor space could be 
infinite, unless an appropriate cutoff is found. Symplectic spinors are also 
called spinsters. The symplectic product suggests we define both 

and 

AA' BB' 
~AB'~A'tV O'a O'b = gab 

1 AA' Z Z '  
- -  ~ A . . . Z ~ A ' . . . Z  ' O "  a " �9 �9 Crz =ga. . , z  
( N -  1)! 

This spin structure could be related to the Riemannian spin structure when 
antisymmetrization is replaced by symmetrization and n is replaced by -n .  
Thus, symplectic spinors are referred to as negative-dimensional spinors. 

5. RELATIVITY STRUCTURE 

5.1. Bergmann Manifold 

An n-dimensional manifold is a set (the elements of which are called 
points) along with a topology (a guide to tell which points are near each 
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other) such that any small region of points can be mapped 1-1 to an open 
set of R ". To build an n-dimensional spacetime, we need an n-dimensional 
manifold (called the base manifold) and a bracket space. The bracket defines 
a chronometric on the base manifold providing properties such as curvature 
and size. The group associated with the bracket is called the structure group. 
The manifold structure is chosen since it is more general than R n, yet retains 
the local ~" structure. We choose an N2-dimensional manifold as the base 
manifold and the Bergmannian bracket space. Then the complex special 
linear group SLu  is the structure group, and the Bergmannian chronometric 
is the chronometric. Together these form a Bergmann manifold denoted BN. 
We call the manifold "spacetime" and the points of the manifold "events of 
spacetime." 

A fiber bundle is a manifold which is locally M1 • M2 for some mani- 
folds M1 and M2. If  M2 is a tangent space, then the fiber bundle is called a 
tangent bundle. At each event of BN w e  shall place an N2-dimensional tan- 
gent space, i.e., a linear vector space, obeying the Leibnitz rule. This describes 
a tangent bundle in which M~ = BN. Each special sesquispinor specifies a 
vector in the tangent space of some event of the spacetime. In order for the 
N x N complex special sesquispinor to be described by N 2 real variables, we 
require it to be Hermitian. Any tangent space can be described by an N- 
dimensional complex spin space which is equivalent (i.e., same number of 
variables) to an N2-dimensional real vector space. The transformation prop- 
erties are determined by applying the structure group to the tangent spaces 
of each event of the spacetime. We shall take the spin form o-a AA" to be our 
field variable, just as the symmetric biform gab is taken to be the field variable 
of general relativity. We shall call o-S A' the metric form. 

5.2. Assumptions of Relativity 

We mean to create a theory which retains as much of the general relativ- 
ity structure as possible. The following is a list of some principles which are 
assumed by the theory of general relativity. 

1. The principle of general covariance. 
2. Einstein's equivalence principle holds. 
3. The stress-energy-momentum tensor T ab is the source of the gravita- 

tional field gab. 
4. There exists a four-dimensional, rank-two symmetric chronometric. 
5. TC,,b----0 (spacetime is torsion-free). 
6. G ab= ~cT ab (Einstein's equations hold). 
7. The chronometric is constant under covariant differentiation. 

We now state how these assumptions are changed by the use of a 
Bergmannian manifold BN. 
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Assumption 1. Assumption 1 does not change. 

Assumption 2. Local Lorentz invariance requires SO(l ,  3, •) sym- 
metry. The orthogonal extension to an n-dimensional spacetime requires 
SO(l ,  n, - 1, ~) symmetry. However, the group of a Bergmannian manifold 
Bu is SL(N,  C). Thus, local symmetry o n  BN will be SL(N,  C) symmetry. 
Notice that the local Lorentz invariance will still hold for the four-dimen- 
sional spacetime. 

Assumption 3. A t e n s o r  Tab, with indices ranging from zero to N 2-  1, 
will be the source of the gravitational field gab.... The prefix "hyper" is added 
to the name when N is greater than two. 

Assumption 4. In Assumption 4 the Einstein chronometric is replaced 
with an N2-dimensional, rank-N Bergmannian chronometric. This is a special 
case of Finslerian geometry (Busemann, 1942). 

Assumption 5. Although it is possible to find unique torsion-free con- 
nections (i.e., ['Cab = F Cba) for Riemannian spacetimes, it is not always pos- 
sible for N > 2 Bergmannian spacetimes (Borowiec, 1988). Connections with 
torsion have N 6 possible independent symbols, while those without torsion 
have (N6+ N4)/2. Since Assumption 5 cannot always hold, the connection 
cannot in general be expressed in terms of the chronometric and its deriva- 
tives. Thus, the action for spacetime has two independent dynamical 
variables gabc.., and F Cab. 

Since F cab is not necessarily equal to F Cba, there are two independent 
differentials for vectors, 

t b  Oc = Ubf.) c -Jc r CabI)a 

o r  

Vb~) c = ~bl.) c "~- r CbaVa 

and, respectively, two independent differentials for covectors, 

VbVa = 3bY= -- F cabVc 

o r  

V b V  a = ~b~a - -  F CbalJ c 

For the calculations in this paper, we have used the first definition in each 
of the two cases. 

Assumptions 6 and 7. Assumptions 6 and 7 can be obtained in gen- 
eral relativity by varying an action. These assumptions are discussed in 
Section 5.4. 
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5.3. Raising Indices 

The connection, torsion tensor, curvature tensor, and the (0, 2) Ricci 
tensor are not chronometric-dependent quantities. The torsion of spacetime 
is defined by T(X, Y)  = Vx Y -  V r X -  [X, Y], and yields the torsion tensor 

c - -  c c T ab-- F ab-- F ba 

in a geodesic coordinate basis (gcb). The curvature is defined by 

R(x,r)Z =- V x V r Z -  V r V x Z -  Vtx, rlZ 

and yields the curvature tensor 

Rabcd = F adb,c - -  F acb,d--] - F aceF eab - F ~aeF ecb 

The inverse Riemannian chronometric is defined by 

g~b= [co(g~b)]/[det(gab)] 

which implies gaCgbc = ~a b . We require the inverse Bergmannian chronometric 
to obey 

gacd'" gbcd... = r a b 

Thus, the N > 2  inverse Bergmannian chronometric is not as yet uniquely 
defined, except in special cases. 

Let FCab be the torsion-free connection (i.e., F = F[ r=0) and let Keab be 
the contortion tensor, KCab = (F cab-F Cab). For the N =  2 case, 

] cd 
['Cab = ~ g  (gda,b + gclb,a --  g,b,a) 

I_ cd e e I c 
K~ab = 2g (genT a~ + gebT an)- ~ T ba 

which may be derived using equation (4) of Appendix A. 1. Notice that for 
N =  2 the symmetric part of the connection, (FCab+ F~ba)/2, is not torsion- 
free. The (0, 2) Ricci tensor is defined as R,b=RCa~b. The (1, 1) Ricci tensor 
Rab and the Ricci scalar R=R"a depend on the (0, 2) Ricci tensor and a 
tensor which raises indices. 

A two-index tensor which reduces to the chronometric for N =  2 is 
required in order to raise and lower tensor indices. In a Riemannian space- 
time the chronometric fulfills this requirement. There are a few possibilities 
for this tensor in a Bergmannian space, all of which reduce to the chrono- 
metric for N =  2. 

1. The Ricci tensor is of the necessary rank, thus suggesting setting 
gab proportional to Rab for the N =  2 case. In this c a s e  Vgab  ~0. 

2. Often Finsler metrics are contracted with vectors to lower the tensor- 
ial rank. Perhaps the Bergmannian chronometric along with appropriate 
contractions could be used. 
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3. Using covariant differentiation to contract with all but two of the 
metric indices, T a = g a b c ' " T b ;  ..... In this case Vg~br 

5.4. Varying the Action 

In general relativity p =  [--det(gab)] 1/2 is used to compensate for the 
Jacobian in the action. Since o-,,~ (g)i/2, we use p = det[(o-"~)-~], where a = 
AA', called the chronometric densitY (note: p is not a tensor). The (1, 1) 
Ricci tensor shall be defined by Rab =ga~a'"Rbc;a... and the action by 

Using 

S = - pR - pg~bC'"R~b; .... 

(~ p = --  p 6  dAA'~ GdAA , = --  p 6 - - 1 8  t7 

figabC... = Ncrbn~ ~rCcc... eABC.., e A ' B ' C ' . . . ~ t f  A.4, 

6[Rob;c...] : [ 6 r  ~ . . . . .  - [ 6 r  % 1 ; ~  .... 

and setting fiS = 0, we find 

f p{[-Rcr + N#l&r  + gab .... ~[Rab;c. . .]} d " x = O  

where 

]1 a AA' ~ o'bBB" O'Ccc... ~ABC... ~A'B'C'.. .Ra b ;c... 

and where R is the Ricci scalar. Since Rab;c... is a function of the connection 
alone, and (a,  F) are independent variables, we obtain the following two 
variation equations: 

f p [ - R a  1 (~a d"x=O +Np]  

f pgabc... ~[Rab;c...] dnx=O 

By contracting the first variation equation with o'dA,, Assumption 6. 
we find 

R a  b __ 1 t~ab R = 0 

which shall be called the vacuum hyper-Einstein equations (see Appendix 
A.3). This equation reduces to the vacuum field equations of general relativ- 
ity for N =  2. 
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F o r  systems with mass,  int roduce the hyper - s t ress -energy-momentum 
tensor  Tab, such tha t  

Tab = [o'aAA , ~ ( p L M ) ] / [ t c N p  ~crb~A,] 

where LM is a funct ion o f  the ma t t e r  field q~ and  the chronometr ic .  I f  we 
assume the act ion is additive, i.e., 

S = p R  + pLM 

then the first var ia t ion equat ion becomes 

_ 1 S~bR = tr Tab Rab 

By contract ing this equat ion,  we find p = - ~ c T / ( N -  1), where T =  Taa (note:  
~ = N2). Thus,  

R~ =r[TO b 6%Tl 
N 2 -  N ]  

The Newton ian  limit is obta ined  by setting v<<c and neglecting non-  
linear terms in the connection.  The  following equat ions  are a direct result 
o f  the Newton ian  limit (see Appendices  A . 4 - A . 6  for  derivat ions in the 
Newton ian  limit) : 

1. C 2 dt2>>c dt dx>>dx dy 
2. d2x~ /d t  2 = - c2Fkoo 

3. Roo = Fkoo,k 
4. T =  TOo 
5. R~ = g~176 %o,,,b... 

Here  k = 1 , . . . ,  n - 1  and  i = 4 , . . . , n -  1. F r o m  these five equations,  we 
obtain  

g ~ 1 7 6  %0,~b... = -- tr T~ 2 - N -  1 ) / ( N  2 - N )  

Let  p be the mass  density and set Too = cZp. Assuming (1) 

TOo = c2 g ~176 P ;a... 

and (2) there exists a funct ion ~b such that  

F%0 = - (ac~/OXa)/C 2 

i.e., there exists a conservat ive gravi ta t ional  field, then 

g~176 dp + tc[(N z - N -  1 ) / ( N  2 - N)lcZp} ;a . . .b  = 0 
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Also assume that 

V2,-1(r = ~ , -1Gp  

where ~ ,_  1 is the solid angle in (n-1)-dimensional space (~3 =4z) .  Then 
we find 

N Z -  N G 

~c - N 2 _ N  - 1 ~N2-1 

This result agrees exactly with that of  general relativity for N =  2. We then 
replace Assumption 6 of Section 5.2 with 

a 1 N Z - N  ~,~Nz_lGTab 
R b - N g a b R = N 2  N - 1 r 

Assumption 7. The second variation equation is 

f pgabc... (~[Rab;c...] d"x=O 

Define the tensor Dabc... by 

g(Rab;c...) = (gRab);c... + Dab .... 

Note the following: 

(gRab) -- g(Rab) ---- 0 (N= 2) 

(gRab) ;c -- g(Rab;c) = (6[' aca)Rab "b (gF'~b)R.,~ (N= 3) 

(gRab) ;ca-- g( Rab;ca) = ( gFedc)Rab;e -- Dace;a- Daba;c (N= 4) 

(gRab) ;ed Ys g(Rab;cd) (N> 2) 

Then using the results of Appendices A.7 and A.8, we can write the second 
variation equation as 

(_l)U-, f [(pgabC...); ..... -- (Pga~C'");...c~gba] gFaab d"x 

abc... + pg Dabc... d ' x  = 0 

The quantity p is neither a scalar nor a tensor, it is a density. There is 
no natural covariant derivative defined for densities. We define p;a = O. Thus, 
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the second variation equation can be written as, 

1 )N - I f [p(gabc...), ..... _ p(gapC...);...~P~ba] ~ F  a,~b dnx ( 

f pgab~'"D,~bc.., d " x  = 0 + 

For N= 2, the second variation equation becomes (see Appendix A.9) 

[ ( g a ~ )  ;6 - -  (gaS) ,p,~bo ] = 0 

or equivalently, 

Also this equation yields 

g"e;~=0 

gab ;c : 0 

For N = 3, thesecond variation equation becomes (see Appendix A. 10), 
aide b abc ..1_ [(gabC);ca--(g ) ; cp~- -g  (R~c Rc~)]=0 

Summing over b and a yields 

(gabs) ;~b = -- g ~b~Rb~/ 4 

where the 4 comes from (n-1) /2 .  The constraint Vg=0 for a Riemannian 
chronometric falls out as a result of the second variation equation. This does 
not occur for an N> 2 Bergmannian chronometric. If we assume g~bC;c=0, 
then 

gabC(Rac + Rc,~) = 0 

and 

gabCRbc = 0 

Thus, Assumption 7 shall be unchanged for N = 2, but quite different 
for N>2. 

This concludes the changes made to the assumptions of general 
relativity. 

6. "SPHERICALLY" S Y M M E T R I C  B E R G M A N N I A N  
C H R O N O M E T R I C  

6.1. SUN Invariants 

The set o f  N • N unitary matrices with determinant one is a representa- 
tion o f  the special unitary group [often denoted SU(N, C) or SUN], which 
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has N 2 - 1 parameters. SLN can be decomposed into spatial rotations, repre- 
sented by the group SUN, and boosts, represented by the space ENd-1, once 
a time axis is chosen. 

I f  x = T(x), then x is said to be invariant under that transformation. If  
an object is invariant under all transformations T defined by elements of  a 
group, then the object is said to be invariant under that group. For  example, 
the set of  3 x 3 orthogonal matrices with respect to the identity represent the 
rotation group denoted 0(3, 0) or 03. When a vector is transformed under 
03, that vector undergoes a rotation in the three-dimensional space. The 
magnitude of  a vector dr given by dr 2 = dx 2 + dy 2 + dz 2 does not change under 
rotation. Thus, r is said to be O3-invariant. 

Just as one might change from rectangular coordinates to spherical 
coordinates, we will change from the N complex special sesquispinor coordi- 
nates to the N 2 real coordinates, such that some of the variables are SUN- 
invariant (such as the time and radius coordinates of orthogonal spacetime). 
The special sesquispinor contains a complete description of an event in 
the Bergmann spacetime and can be represented as a matrix, so changing 
coordinate systems can be accomplished through similarity transformations 
of  the special sesquispinor. The trace of  a matrix is always invariant under 
similarity transformations; therefore the trace is SUN-invariant. We choose 

t = ( X )  - 1 (trace X)  

to be the time coordinate. Since this is the only linear invariant, we will not 
include any other time dimensions in this theory. Thus, no special 
assumptions are necessary for local causality, i.e., Bergmann spacetimes are 
inherently causal for all N. Let the spatial spin matrix be defined as 

X s = X  - (X )~o  

Xs  describes an (N 2 - 1)-dimensional manifold which we shall call space. The 
determinant of  a matrix is also invariant under similarity transformations; 
therefore other SUN-invariants can be found through the characteristic poly- 
nomial of  the spatial spin matrix; [de t (Xs-  2~o'0) = 0]. The solution to this 
equation yields N - 1  independent SUN-invariants of degree 2 through N, 
respectively, given by 

rrn=(__l)N-m+l[ O ] N-m 
L ~ J  [de t (Xs-  ~.ao)] I ~= o 

for m = 2, 3 . . . . .  N. The minus sign is chosen such that r2 will be positive 
for all N. Then rm is the ruth-order SUu-invariant with rl = t. 
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The orthogonal group O, has one invariant, r =  ( x 1 2 - ~  - . . .  -~-Xn2). The 
unitary group SUN has N - 1  invariants, rE, r3  . . . . .  rN. The O,-invariant r 
is of order 2, while the SUN-invariants rm are of  order m. So for spacetime 
dimensions n > 4 (n = N 2) there are more SUN-invariants than O~-invariants. 
These SUN-invariants can be written as 

1 ~ ~ VA~A~ vAN~'~ 
r N =  4- ~ GAI...ANGA~...A'NA S �9 " �9 A S  

1 
r N _ 1 - - - - q - - -  

( N -  1)! 
e A1...A,,e a~...A, S A'A; X~2 a; �9 �9 . X~NA'~ 

r2  = -4- 1 ~, AI . . .ANe A~...A,N6AIA~ . . . 6 A N _  2A'N- 2 x A  N_ IA'N - - 1 .  �9 . xANA~N 

1 
t = +- -  f iAsX As 

N 

where the delta symbols ~AB and 5As are one if A = B and zero otherwise 
and where the N-dimensional Levi-Civita symbol eAs...c is zero if there are 
repeated indices, one for elz..u and changes sign under index permutation. 

6.2. Omega Space 

There are N SUn-invariants,  so we need N 2 - N angles to complete the 
set of coordinates for the N2-dimensional hyperspace. We shall call the space 
of angles the omega space. A method of determining these angles requires 
the group theory concepts of  coset, normal subgroup, and factor group. 

If  S is a subgroup of the group G, then a left coset is defined by {gs ] s ~ S} 
and a right coset by {sgls~ S} fo r  some element g of G. Each element of  G 
defines a left and a right coset of S in G. Two left (right) cosets are either 
identical or have no elements in common. Therefore a complete set of left 
(right) cosets can be obtained by using all elements of G to define cosets and 
removing any repeats. This complete set of left (right) cosets partitions G. 

S in a normal subgroup of G if for all g in G and for all s in S, (gsg-  1) E S. 
As an example, let G be a group represented by matrices, and let [G] denote 
the subgroup of  G consisting of  diagonal matrices in G. Since diagonal 
matrices commute with all matrices, [G] is a normal subgroup of  G. For  all 
normal subgroups the left coset and right coset generated by g are the same. 

A factor group (denoted G / S )  consists of elements which are cosets of 
S in G, where S is a normal subgroup of  G. This group is also called the 
quotient group. G/[G] is an example of  a factor group. 
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An element of  [SUN] can be written as the matrix 

diag[exp(- ia l /2)  . . . .  , exp(--iau-1/2),  exp(i(al +" - �9 + aN-1)/2)] 

These diagonal elements are called the eigenvalues. Define 

G N= - SUN/[SUN] 

and call this group the globe of  SUN. The number of  parameters for G N 
is (number of  parameters in SUar)-  (number of  parameters in [SUN])= 
(N 2 - 1) - ( N -  1) = N 2 - N, which is the number of  angles required for the 
omega space. We set G N to represent this space. 

The spatial spin matrix Xs  may have degeneracies among the eigenval- 
ues (also recall Xs  is traceless). The case where there are no degeneracies is 
called regular. Singularities in the spacetime metric fall into two categories, 
coordinate-dependent singularities and true singularities. The Earth's geo- 
graphic poles and the Schwarzschild radius r = 2M are examples of coordi- 
nate-dependent singularities, since observers passing these points would see 
no physical significance to these points. Singularities do not occur in the 
regular parts of spacetime unless there is a black hole present. Thus, to find 
black holes, first search the regular parts of spacetime for singularities. 

We partition GN into the following classes of degeneracies: 

N = 2  

N = 3  

N = 4  

where 

* * r2=O (origin) 

*,/* r2 > 0 (regular) 

* * * r3 = r2 = 0 (origin) 

* */* r2=ctr3r 

*/*/* r 2 r  3 (regular) 

* * * * r4 = r3 = rz = 0 (origin) 

, �9 , / ,  r3=flra=Tr6r 

* */* * r4=~r~7~O, r3=O 

, , / * / *  Mess 

, / , / * / *  All else (regular) 

2 2 3 3 3 3 1 

a-33, / =10 
The fully degenerate case is called the origin, while the fully nondegenerate 
case is called the regular portion of G N. There are PN classes for each spinor 
dimension, where PN is the number of  partitions of N. Each class, called an 
orbit, contains all events of  spacetime which can be rotated into each other. 
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The intersection of any two classes is the null set and the union of all the 
classes is GN. The fully degenerate class has but one event, the origin. The 
N= 3 and N= 4 results above suggest that the regular parts of spacetime can 
be approximated as the union of solid cones. 

6.3. Two-Spinor Example 

The following examples illustrate the previous concepts for the case 
of N=2. 

A set of constant spin matrices called the Pauli spin matrices are given 
by 

d.0=(; 01) ' d.l=(01 ;), d.2=(0i ; i ) ,  d'3=(; ?1 )  

A special sesquispinor can be described by 

o o [ t + z  x - i y )  
X2=t#~ t - z /  

Then the characteristic polynomial of the spatial spin matrix is given by 

det[X2 - (t + ;,) #01 = )2 _ r2 

and the SU2-invariants are then 

( x )  = t 

r2 = x 2 + y2 + Z2 

An arbitrary element of SU2 can be written as 

= (  e i(7+~/2 cos/3/2 e i(~-~/2 sin/3/2) 
U(a,/3, ),) \_e_i(r_~)/2 sin/3/2 e -~(r+~/2 cos/3/2/ 

An arbitrary element of G 2 can be written as 

Q(/3,~/)=(e-0/2 e~0/2)U(a,/3,?,)=(e~/2 e_.0.,/2)( cos/3/2 sin/3/2 t 
\ -  sin/3/2 cos/3/2J 

The spacetime variables for the "spherically" symmetric spacetime are 
then given by (t, r2, f~ ), where ~ = (7/, [3). 

6.4. Three-Spinor Example 

The following examples illustrate the previous concepts for the case 
of N=3. 
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A set o f  ex t ended  sp in  mat r i ces  is g iven  by  

6-0 = 1 , 6-1 = 0 , 

0 0 

6-2 = 0 , 

0 

(ioi) (!Ooo)i 63 = 0 , 64 = 0 , 

0 0 

6-5 = 0 , 66 = 0 i , 

1 i 

67 = - 1 , or8 = ~ 1 

0 0 2 

A special  s e squ i sp ino r  c a n  be descr ibed  by  

)(3 = td'o + xl 6"1 + X2(~'2 +Yl 6-3 + Y26-4 -t- y36-5 + Y46-6 + Z16-7 "~ Z26-8 

T h e n  the  charac te r i s t i c  p o l y n o m i a l  o f  the  spa t ia l  sp in  m a t r i x  is g iven  by  

det[X3 - (t  + ,t)6"0] = - A, 3 + r2s - r3 

a n d  the  SU3- inva r i an t s  are  

( x )  = t 

2 2 2 2 + y3 + y 4 ) -  2(x~ + 2 2 XZ. .}_ZI . j_Z2)]AV 2 2 2 2 z l [y t  + Y 2 - Y 3  -Y4]  r3 = z2[(yl + Y2 

+ 2[x l (y ly3  +y2y4)  + x2(yzy3 -YlY4)] 

2 2 2 2 2 2 2 2 
r2 = x l  + Xz+yl + y 2 + y 3 + Y n + Z l  +z2 

A n  a r b i t r a r y  e l eme n t  o f  SU3 c an  be wr i t t en  as 

U(al  . . . .  , a s ) =  Q(as)Q(aT)  " " " Q ( a l )  

where  

Q(ai )  = 1 cos (a i /2 )  + cri s i n ( a / / 2 )  

A n  a r b i t r a r y  e l emen t  o f  G 3 c an  be wr i t t en  as 

Q(al  . . . . .  a6) = Qt(aT)Qt (as )  U(otl . . . . .  a8) 

The  space t ime  var iab les  for  the  " sphe r i ca l ly"  sym m et r i c  space t ime are  

(t, r2, r3, f~ ), where  f2 = ( a l  . . . . .  a6). 
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6 .5 .  C h r o n o m e t r i c  C o n s t r a i n t s  

The time translation operator is Tt = ( x  ~ x + A t 3  ). The time reversal 
operator is Tr = (t  ~ -  t). The invariant for Bergmann spaces is 

drU =gabc... dx  ~ dx  b dx  C " . .  

We shall require g to be invariant under Tt and Tr. Tt requires that g be 
independent of time and Tr requires that dt appear in the volume element 
with only even powers for N even, or either odd powers or even powers for 
N odd (depending on the required sign change of drN). The only linear 
scalar that can be constructed with the omega space is (df~)2, so no other 
powers of dO shall appear in the volume element. 

For  N =  2, these requirements (along with Einstein's equations) yield 
the Schwarzschild metric. For  N = 3 they yield 

d z 3 = d t ( M d t 2 + N v v d x U d x V ) ;  p , v = l  . . . .  ,8  

= dt (e ~ dt  2 -  e ~ dr 2 - e ~ @2 _ R2 d~2)  

= d t  (e ~~ dt  2 - e z dr 2 - e z @2 _ R2fap dO ~ dO s)  (1) 

where f a ,  = f , a  and a, /3 = 3 . . . . .  8; or 

dz3=dxV(~gaood tZ+g ,  vrdx~  d x r ) ;  # ,  v, 2/= 1 , . . . ,  8 

= (A~ dr + B1 dq) dfl - (A2 dr + B2 dq)(e  z dr 2 + e ~ dq 2) 

(A 3 dr + B3 dq) df~ 2 (2) 

where R, co, ~, A~, and B~ are functions of r = (r2) 1/2 and p = (/'3) 1/3. 
TO find flat spacetime, let 

df~ = co = X = 0  

A i =  Bi = 1 

and let t return to ct in the volume element equation: 

1. d'( 3-~- c dt [cZ(dt)2 -~2(dx~-)2] 
2. dr 3 = ( d r + d q ) [ c  (dt) - 2  (dxi)  21 

To find the light cones, set dr  equal to zero. 

1. N = 2 :  

dr 
- - =  + c (usual light cone) 
dt 
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2. N = 3 ,  formula 1: 

dt = 0 

3. N = 3, formula 2: 

dr rpI2+c211'2 
dt L \-d~ / 
dr dp 

dt dt  

Setting d p / d t  equal to zero yields interesting results. Then for N = 3 the 
first equation for each formula is equivalent to the usual light cone. For  
formula 1, the new light cone restriction, dt = 0, will separate the past from 
the present, which does not conflict with physical phenomenon. For  formula 
2, the new light cone restriction, d r / d t  = 0, is not as satisfying. 

For  N = 3 let: 

1. r = (rO 1/2, p = (r3) 1/3. 

2. R, co, ~ are functions of  r, p only. 
3. f ~ a = f p a ; a , ~ = l , . . . , 6 .  
4. d p / d t = O .  

In conclusion, we suggest the nine-dimensional spacetime interval 

dr  3 =d t  (e ~~ dfl  - e z dr 2 - e ~ @2 _ R ~ f ~  dO a dO s) 

as a "spherical" symmetry analog to the four-dimensional Schwarzschild 
invariant. 

A P P E N D I X  A. D E R I V A T I O N S  FOR SECTION 5 

A.1 

Assume 

Then 

gab ;c ~ 0 

gbc ;a ~ 0 



1 6 3 8  

and 

So 

gca;8 = 0 

d d __ gab,c - -  gdbF ca-- g~dF ~b-- 0 

F d F d gbc,a - -  g dc ab - -  gbd  ac = 0 

d d gca,b - -  gdaF b.-- g~aF ba = 0 

Combining (A3) + (A2) - (A1) = 0 yields 

- g'ab(F %~ -- V ac~) -- ga~(F dab "~ r dba) = 0 

Recall that Tab, the torsion tensor, is given by 

Fd~b = F%~+ Tab 

Then, 

d d d d 
gca,b + gbc,a--gab,c--ga.T bc--gdbT ,~c--gd~([F ~ + F  ha)=0 

gdcr dab + gdcF dba 

= (&a,b + gbc,a - gaa,c) + (gdaTa~b + gdbTa'~) 

lab, c] + [ba, c] + C.bc + T,,b~ 

Let T~ab =0 (torsion-free). Then ~.b~ =0. So 

[ab, c] + [ba, c] = ~,,bc 

Honeycutt 

(A1) 

(A2) 

(A3) 

(A4) 

A.2 

Assume 

Then 

g a b c ; d = O  

gbcd;a = 0 

gcda ;b = 0 

ga,,b ;c = 0 
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So 

gab~,d-- gebcI" eda  - -  g a e c F  edb  - -  gabeI" edc= 0 

e e e __ 
gbcd, a - -  ge~dF ab -- gb~aF ,~ --  gbc~F ,~d-- 0 

e e e __ 
gcaa,b --  geaaF bc --  g ~ a F  ha-- gcdeI" ba --  0 

gaab,c --  ge,,bF ~ca -- ga~bF ~ca --  gaa~F ecb = 0 
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(A5) 

(A6) 

(A7) 

(AS) 

Combining [(A5) + (A6)] - [(A7) + (AS)] = 0, and following the same pro- 
cedure as that of  Appendix A.3, we obtain 

[ad, bc] + [be, ad]  = C,~bca-- 7",,boa 

Let T~b = 0 (torsion-free). Then 7"ab~a = 0. So 

[ad, be] + [be, ad]  = Cab~d 

A.3 

Let 

Then 

S = pg,~b~...Nab ;c... 

(~ S ~ A A'  a abe .. 
[ - - p O ' a  5 0 "  A a ' ] g  " R a b ;  . . . .  

+ p R a b ; c . . . [ N G b B B  , O ' C c c  . . . .  e A B C . . . e A ' B ' C  '... . . . (~ ( yaAA ,  ] 

+f ( f iF )  

,~S 
- [_pO.aAA'R]  

6 CraA A , 

+ N p R a b ; c . . . o ' b e B , o ' e c c  . . . .  e A B C . . ,  e A ' S ' C ' . . .  . . . 

Set the above equal to zero, and contract with O'aAA ': 

[O'~AA, CroA~'R + R,~;c o'~A" O'bsB ' CrCcc . . . .  e a s e . .  ~ ' ~ ' c ' . . . .  . . ] = 0 

--  ~ a a R  + NRab;c...g~bC"" = 0 

-~5 '~ ,R  + NR'~a  = 0 

a 1 
R b - - ~ a b R ' = O  
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A.4 

We have 

Rab -- F Cba,c -- F eca,b + F CedF db a -- F CbdF %a 

For  the Newton ian  limit, products  of  F vanish, 

Rab = F Cba,c -- I" Cca,b 

Then 

Roo :" ~ Co0,c -- F Cco,O 

For  the Newtonian  limit, time derivatives vanish, 

Roo = F e00,e 

Since we have set 

Rab = gabc'"Rab ;c... 

we obtain 

and 

R~ = g~176 

R~ = g~176 [r'%,o] ;~ . 

A.5 

Recall, 

R% = K [ T % -  6 ~  2 -  N)] 

R~ = ~;[T~ T / ( N 2 - N ) ]  

For  the Newtonian  limit, T = T~ We have 

R~ = ~cT~ - 1 / ( N  2 - N)]  

R~ = ~ T~ 2 - N -  1 ) / ( N  2 - N ) ]  

F r o m  Appendix  A.4 

R~ = g~176 %,a] ;b... 

Thus,  

gOOb-'[raoo,a] ;b... = ~C T~ 2 - N -  1 ) / ( N  2 - N) ]  

Honeycutt 
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A.6 

Let 

Then, 

r %  = - ( o O / O x o ) / c  2 

--c2[l~aoo,a]  ;b... = [ao(aa~ )];b... 

= [ a a a ~  ]:b.., 

= [ v . ~ _ , ( ~  )];b... 

Assuming TOo = e2g~176 .... and using Appendix A.5, we find 

g~176 ) + tc[(N 2 -  N -  1) / (N 2 - N ) ] c 4 p }  ;~... = 0 

We set 

V]_I (~b) = - ~[(N 2 -  N -  1) / (N 2 -  N ) ] c 4 p  

A.7 

We have 

N a b  -~. [FCtab,c t - -  Faaa,b + FPabFa~,~ -- F#aaFapb] 

In a local coordinate basis, 

~ Rab = 8[raab,a] -- (~[raaa,6] 

Since 8 commutes with partial derivatives, 

~Rab = [~Faab],a -- [8r'aaa],b 

Since we are in a local coordinate basis, 

~ Rab = [ ~ r a a b ]  ;a - -  [ (~FCtaa];b 

This equation is tensorial, it is true in any coordinate basis. Note that this 
equation is true for any dimension N. For  N =  2, this equation is the Palatini 
identity. Thus, for N > 2 ,  we shall call this equation the hyper-Palatini 
identity. 
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A.8 

We have 

I= f Pga6~'"[SRab] ;c... d nx 

= fpgab~"'[(SU'~ab;~ -- fiF~;6);c...] dnx  

Integrate by parts N - 2  times (boundary times vanish) 

1= (_l)U-2 f ab .... a [pg  ];...~[(~F ab;c~ -- (~Faaa;b)] d " x  

Integrate by parts once more for each term, 

i= (_I)N-I ~[(pgab~...); ..... _ ~ .... b ( P g  );...ct~8 a] ~Faab d " x  
.1 

A.9 

For N =  2, 

Dab = 0 

So the second variation equation is 

f p[(gab) ;c -- (gad) ;a~ 8FC,b = be] d4x  0 

Thus, set 

[ (gab)  ;c - (gad ) ;d6  be] = 0 

Recalling gab =gba, the only solution to this equation is 

gab ;c = 0 

By lowering the indicies via the chronometric, we also find 

gab ;c = 0 

A.10 

For N =  3, 

Dabc = ( fiFa~)Rab + ( 6Fabc)R~a 

Honeycutt 
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So the second variation equation is 

(_1)~ f [p(gob~) aec b ;cd-- P(g );ce ~ d] (~Fdb d 9x 

+ fpgabc[Rdb ~F~c + Rad ~Fdc]  d9x = 0 

or rearranging the dummy indices, 

f [p(gabC) aec b 
;,,a-P(g ) ; c e  ~ d 

+ pgab~(Rdc + R~d] fiFdb dgx = 0 

Thus, set 
abe,, ~ aecx e b ~_ a b c z ~  .~_ 

g ) ;~a- tg ) ;ce 0 d g (~a~ R~d) = 0 
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